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The influence of the space charge of ions emitted from the surface of a conical spike on its shape has been
studied. The problem of the calculation of the spatial distributions of the electric field, ion velocity field, and
the space charge density near the cone tip has been reduced to the analysis of a system of ordinary differential
equations. As a result of numerical solution of these equations, the criterion for the balance of the capillary and
electrostatic forces on the conic surface of a liquid-metal anode has been determined. It has allowed us to relate
the electrical current flowing through the system, the applied potential difference, and the cone angle. We have
compared the results of our calculations with available experimental data concerning emission from the surface
of pure liquid gallium, indium, tin, and some liquid alloys, such as Au+Si, Co+Ge, and Au+Ge. On the basis
of the proposed model, explanations have been given for a number of specific features of the emissive behavior
of different systems.
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I. INTRODUCTION

It is known that, as a result of the development of an
electrohydrodynamic instability, the surface of a conducting
liquid �liquid metal� takes the shape of a cone in a rather
strong external electric field �1–7�. An enhancement of the
field near the cone tip provides conditions for the initiation
of emission processes such as field evaporation of ions
�8–12�. Interest in studying the geometry of such structures
was stimulated in large measure by the development of
liquid-metal ion sources �LMISs�. Considerable progress in
the theory of conical spikes started from Taylor’s investiga-
tions �2,13�. He has shown that, for a cone with a half angle
of �T�49.3°, the surface electrostatic pressure PE depends
on the distance from its apex as R−1 and, hence, can be
counterbalanced by the surface pressure PL�R−1.

The geometry of ion-emitting cones �Taylor cones� has
been investigated in numerous experimental works �14–19�.
These works testify that an increase in the applied potential
difference is accompanied not only by the appearance and
increase of the emission current, but also by a decrease of the
cone half angle. For small currents, i.e., when the space
charge influence is negligible, the half angle is close to Tay-
lor’s angle �T. The phenomenon of cone sharpening can be
interpreted as the system response aimed at the conservation
of the balance of the pressures PE and PL under the condi-
tions of the screening effect of the space charge. The last
effect in the case of an emitter with invariable shape, as is
known �20,21�, reduces to the Child-Langmuir law.

Simple analytic models, which relate the basic parameters
of a problem, play an important role in gaining insight into
the physical processes that occur in liquid-metal ion sources.
Among these models are Mair’s theory �22�, the models by
Kingham and Swanson �10� and Mair and Forbes �23,24�,
and, certainly, Taylor’s model �2�. Nevertheless, the above-

listed models do not present a theoretical description of the
current dependence of the cone angle. In this work, we pro-
pose a model, which generalizes, on the one hand, Taylor’s
solution to the case where the space charge starts playing an
important part, and, on the other hand, the Child-Langmuir
law to the case of an emitter of variable �self-adjusting�
shape. It is based on self-similar solutions for a charged par-
ticle flow �25,26�, which were found to be compatible with
the Laplace-Young stress condition for a liquid conducting
cone: see our Letter �27�. Clearly, this model does not at-
tempt to describe all the features of operation of liquid-metal
ion sources. The application of self-similar solutions restricts
our analysis to a precisely conical shape of the emitter. So
possible deformations of the emitting cone observed in ex-
periments, in particular, the appearance of small jetlike pro-
trusions on its vertex, remain beyond the scope of this paper.
The advantage of the proposed model is the possibility to
describe distributions of the electric field potential and of the
ion velocity field over the cone and, as a consequence, to
obtain relations between the cone angle, the current, and the
applied voltage.

II. INITIAL EQUATIONS; SELF-SIMILAR REDUCTION

Let us consider a single-velocity flow of ions evaporating
from the surface of an infinite conical anode in the frame-
work of the hydrodynamic description �25–28�. Figure 1
shows the geometry of the problem and the notations used.
The mass and charge densities are proportional to each other
for a charged-particle flow, and vorticity of the flow is con-
served in a potential electric field �E=−���. We assume the
initial ion velocity to be equal to zero. This approximation
can be considered to be well founded in view of the ex-
tremely high values of electric field strength near the cone
tip. Then the vorticity of the flow is zero close to the anode
surface, and, hence, the ion flow is potential. In this case, the
flow velocity, along with the electric field, can be described
with the help of a scalar function, the velocity potential: v
=��. Then the original set of equations can be written as
follows:
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�2� = − qN/�0, �1�

m����2/2 = − q� , �2�

��N � �� = 0. �3�

The first equation is the Poisson equation for the electric
field potential �; here N is the charged particle density, q is
the particle charge, and �0 is the vacuum permittivity. The
motion of particles is described by the second equation,
which gives the energy conservation law for ions in an elec-
tric field �� is the velocity potential, m is the mass of a
particle�. The third equation is the continuity equation. The
Poisson equation �1� has to be solved together with the con-
dition that the conductor surface is equipotential. It is con-
venient to take the electric potential of the the anode be equal
to zero, �=0, which agrees with the condition that the initial
velocity of particles is zero, ��=0 �see Eq. �2��.

The equilibrium configuration of the free liquid-metal sur-
face is determined by the balance condition for the electro-
static and capillary forces �the Laplace-Young equation�. For
a conical surface it takes the form

PL =
�

R
cot � =

�0

2
�����=0

2 = PE, �4�

where � is the cone half angle, � is the surface tension, and
R is the distance from the cone apex. In the case of a high
mass flow rate, characteristic for the so-called cone-jet mode
of electrosprays �29,30� or for sonic sprays �31�, the hydro-
dynamic term also contributes to the pressure balance condi-
tion. However, for the process of field evaporation of ions
realized in the experiments �14–19�, this term appears to be

2–3 orders of magnitude smaller than the electrostatic �PE�
and capillary �PL� terms �3�, and we can neglect it.

In order to pass to dimensionless variables, we introduce
some characteristic spatial scale L, which will be taken as the
unit of length �see Fig. 1�. Since Eqs. �1�–�3� do not have
their own characteristic spatial size �they are invariant with
respect to scaling�, the value of L cannot be defined from the
model. Below we will treat L as the size of the top part of an
infinite model cone; the emission current from this part of
the cone will be identified with the experimental current
from a liquid-metal ion source. As an external control param-
eter, we introduce the absolute value of the electric field
potential at the symmetry axis at the same distance L from
the apex of the cone, �L�0. Then it is convenient to define
the dimensionless variables in the following way:

r = R/L, � = − �/�L,

n = NL2q/��0�L�, � = ��m/�2qL2�L��1/2, �5�

and the initial Eqs. �1�–�3� take the form

�2� = n, ����2 = �, � �n � �� = 0. �6�

Switching to spherical coordinates and taking into consider-
ation the axial symmetry of the problem, we obtain

�rr +
2

r
�r +

1

r2�		 +
cot 	

r2 �	 = n ,

�r
2 +

1

r2�	
2 = � ,

nr�r +
n	�	

r2 + n��rr +
2

r
�r +

�		

r2 +
cot 	

r2 �	� = 0. �7�

It can readily be seen that these equations are invariant under
the scale transformations

� → �s
, n → ns
−2,

� → �s
/2+1, r → rs , �8�

where 
 and s are some constants. Consequently, the system
�7� can be reduced by means of the following self-similar
ansatz �see also �25,26��:

� = r
A�	�, n = r
−2B�	�, � = r
/2+1C�	� , �9�

where A, B, and C are unknown functions of the polar angle
	.

In the dimensionless form, the pressure balance condition
�4� reads

�����=0
2 =

cot �

rV2 , V 	 �L
 �0

2L�
. �10�

The dimensionless group V plays the role of an external con-
trol parameter of the problem. One can see from this expres-
sion that the electric potential has to depend on the distance
r as ��r1/2 that uniquely determines the value of the self-
similarity parameter 
=1 /2 �2,13�. Thus, we should apply
the substitution

FIG. 1. The geometry of the problem and the notation: L is the
characteristic spatial scale, � is the cone half angle, 	m	�−�, and
�L is the absolute value of the electric field potential at the sym-
metry axis at a distance L from the apex of the cone. The solid lines
correspond to equipotential surfaces, including the surface of the
cone with �=0. The dashed lines correspond to the streamlines of
the ion flow.
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��r,	� = r1/2A�	� ,

n�r,	� = r−3/2B�	� ,

��r,	� = r5/4C�	� , �11�

which provides separation of variables in �7�. The substitu-
tion �11� enables us to reduce the partial differential equa-
tions �7� to the following set of second-order ordinary differ-
ential equations for the angular distribution of A�	�, B�	�,
and C�	�:

�3/4�A + A		 + A	 cot 	 = B ,

�25/16�C2 + C	
2 = A ,

�15/16�BC + B	C	 + BC		 + BC	 cot 	 = 0. �12�

Note that the last equation can be simplified by introducing
an auxiliary function D�	�	BC	 sin 	:

D	C	 = − �15/16�DC . �13�

Solutions of Eqs. �12� must satisfy a number of conditions at
the symmetry axis �	=0� and on the cone surface �	=	m
	�−��:

A�0� = 1, C	�0� = 0, A�	m� = 0. �14�

Note that the condition that the initial velocities of emitted
particles are equal to zero, i.e., the pair of conditions
C�	m�=0 and C	�	m�=0, follows from the second equation
of the set �12�. Differentiating the same equation with respect
to 	, we find that the condition A	�0�=0 is satisfied if the
second derivative of the function C�	� is finite at the sym-
metry axis. So the solution of the problem �12� and �14� is
unique for a given value of 	m.

The additional boundary condition

A	�	m� = − V−1
cot � , �15�

resulting from the pressure balance condition �10�, is not
used in seeking a solution of Eqs. �12�. It allows us to deter-
mine the value of the parameter V that corresponds to the
angle 	m. Now, let us rewrite this condition in the following
form:

V = 
cot �/E���, E��� 	 − A	�	m� . �16�

The function E��� defines the dimensionless value of the
electric field strength on the cone surface at a distance r=1
from the apex �E���= ����r=1,	=	m

�.
The intensity of the ion flux can be characterized by the

electrical current I �in dimensional form� flowing through the
sphere of radius L with a center at the apex of the cone:

I = 2�qL2�
0

	m

N�R sin 	 d	 . �17�

As a corresponding dimensionless quantity, it is convenient
to take the group

J 	 I

m

�32q2�0L3�3�1/4 , �18�

which does not contain the potential difference �L. It can be
expressed in terms of the functions B and C by the following
relation:

J = V3/2F���, F��� 	
5�

2
�

0

	m

BC sin 	 d	 . �19�

The function F��� defines the particle flux from the top part
of the cone, 0�r�1.

The self-similar solutions �11� give the ion flux density
�j�n����� and the electric field intensity ������ propor-
tional to r−5/4 and, respectively, to r−1/2. This corresponds to
a power law between the quantities j and ���� on the cone
surface,

j � ����5/2. �20�

It correctly reflects the basic property of the system, namely,
the nonlinear growth of current density with increasing in-
tensity. Nevertheless, the 5/2 power law certainly differs
from the exponential dependence determined by the kinetics
of the field evaporation process �32�.

Our solutions would be exact if the actual relation be-
tween the flux density and the electric field were the same as
the model relation �20�. Note that the self-similar solutions
corresponding to the model law of emission �20� are the only
solutions consistent with our main assumption that the sur-
face of a liquid metal is conical. Any distinction of the law of
emission from the model law �20� will lead to deviation of
the surface from the ideal cone.

However, it is known from the experiments �14–19� that
the surface takes a near-conical shape, and it is possible to
associate it with a certain cone half angle � �the method of
angle measurement is given in the above-mentioned papers�.
That is, the details of the current density distribution over the
emitter surface �basically, ions evaporate from the protrusion
growing at the cone apex� have a relatively small influence
on the balance between the electrostatic and capillary forces
at the periphery of the cone structures. The reason is that the
influence of the space charge has an integral character �this
phenomenon is most conspicuous in planar geometry, where
the screening effect of the space charge in principle does not
depend on its distribution�. As a consequence, our approach,
not claiming to describe the LMIS operation in detail, is
rather applicable for the analysis of the integral �averaged�
characteristics of LMISs, including the relations between the
cone half angle �, the total emission current J, and the ap-
plied voltage V. The relations between these main model
parameters are determined by the expressions �16� and �19�.
In the next section, the set of Eqs. �12� will be solved nu-
merically. It will allow us to find the auxiliary functions E���
and F���, which appeared in �16� and �19�. As a conse-
quence, the dependence of � on J �V plays the role of the
parameter� and the current-voltage dependence �� is the pa-
rameter� will be established.
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III. CONSTRUCTION OF SOLUTIONS

A. Asymptotic expansions

In order to solve the ordinary differential equations �12�
and �13� with the conditions �14� numerically, we should use
asymptotic expansions for the unknown functions at 	→0
and 	→	m. This is caused by the singular behavior of the
functions �or their derivatives� at the boundaries 	=0 and 	m.
As will be shown below, B→ at 	→	m and B			→ at
	→0.

At 	→0, i.e., at the symmetry axis, the functions A�	�,
B�	�, C�	�, and D�	� can be expanded into the series

A = 1 + a2	2 + a4	4 + ¯ ,

B = b0	� + b0b1	2+� + ¯ ,

C = 4/5 + c2	2 + c4	4 + ¯ ,

D = d0	2+� + d0d2	4+� + ¯ . �21�

Substitution of these expressions into the initial Eqs. �12�
and �13� yields

a2 = −
3

24 , a4 =
1

210, . . . ,

c2 =
− 5 + 
13

24 , c4 =
295 − 107
13

9 � 210 , . . . ,

� =

13 + 1

2
� 2.3, b1 = −

275 + 173
13

1152
, . . . ,

d0 = 2b0c2, d2 = −
165 + 31
13

384
, . . . . �22�

The expansions �21� satisfy the two first conditions from
�14�; they contain a free parameter �the coefficient b0�, which
is determined by the following condition at the cone surface:
A�	m�=0. Note that the divergence of higher derivatives of
the function B leads to the divergence of higher derivatives
of the functions A and C. The next terms of the expansions
�21� for A and C are of the order of 	2+�.

In the limit 	→	m, i.e., on the cone surface, the unknown
functions can be expanded into power series in the parameter
x=	m−	:

A = x1/2
i=1

ai�x
i/2, B = x−1

i=1
bi�x

i/2,

C = x
i=1

ci�x
i/2, D = d0��1 + x3/2

i=1
di�x

i/2� . �23�

The first coefficients of these expansions are listed below:

a2� =
4

3
b1�, c1� =

2

3

a1�,

c2� =
1

3

b1�


a1�
, b2� = −

2

3

b1�
2

a1�
,

d0� = − b1�
a1� sin 	m, d1� = −
5

16
. �24�

The free parameters of these expansions, namely, the coeffi-
cients a1� and b1�, are determined by the boundary conditions
at the symmetry axis.

Increasing the charge density over the cone leads to
screening of the electric field at its surface, i.e., the coeffi-
cient a1� will approach zero. In the formal limit a1�=0 �the
electric field turns to zero at the anode surface�, another as-
ymptotics is realized:

A = x1/3
i=1

ai�x
i, B = x−5/3

i=1
bi�x

i,

C = x2/3
i=1

ci�x
i, D = d0��1 + x

i=1
di�x

i� , �25�

where

a1� =
9

4
b1�, a2� =

6

5
b1� cot 	c,

c1� =
9

10

b1�, c2� =

3

20

b1� cot 	c,

b2� =
11

15
b1� cot 	c, d0� = −

3

2
b1�

3/2 sin 	c,

d1� = −
9

32
, . . . . �26�

These expressions contain two free parameters: the coeffi-
cient b1� �or d0�� and the angle 	m		c at which complete
screening of the external field occurs.

It should be noted that the function D converges rapidly
near the cone surface for both forms of expansion, �23� and
�25�. Therefore, using the function D is preferable to using
the function B in the procedure of numerical integration of
the problem �12�–�14�.

B. Numerical calculations

The set of equations �12� and �13� was solved numerically
by the third-order prediction-correction method. The calcula-
tion starts from the asymptotics �23� or �25�. It has been
found that the equations admit solutions for the angles in the
range 	T�	m�	c. The minimum angle value 	T�130.71°
corresponds to the Taylor cone ��=�T�49.29°� and refers
to the special case of no space charge, i.e., B=0. For this
case, the 	 dependence of A is determined by the Legendre
function P1/2�cos 	�. The upper bound of the angle, 	c, is
�158.11°. It corresponds to the least possible half angle of
the cone �=�c�21.89°. This configuration of the surface
relates to the formal limit that the electric field at the cone is
completely screened by the space charge �this limit cannot be
achieved because of the finite emissivity of the surface�. The
results of the calculations, corresponding to different values
of �, are presented in Fig. 2. In view of the obvious relations
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�� = r−1/2�A/2,A	,0� ,

�� = r1/4�5C/4,C	,0� , �27�

the angular dependences of A�	� and C�	� give an idea of the
distributions of the electric field and the velocity field. As an
example, Fig. 1 shows the equipotential surfaces and stream-
lines of the flow corresponding to �=45°.

C. The electric field strength at the cone surface

The calculations show that the function E��� grows
monotonically from zero to the value �0.975 as the angle �
increases from �c to �T �see Fig. 3�. Near the limiting case
�25�, the estimate E������−�c�1/2 is valid for �→�c. To
verify this dependence, it is possible to draw an analogy
between the considered problem and the problem of a
charged particle flow in a plane vacuum diode, which can be
solved analytically. Actually, in the one-dimensional case,

where all quantities depend only on one coordinate z, Eqs.
�6� reduce to the set of ordinary differential equations

�zz = n, �z
2 = �, �n�z�z = 0, �28�

which look like Eqs. �12� after the substitution z→	. These
equations admit the following exact implicit solution for the
electric field potential �:

6j2z − E0
3 = �2j
� − E0

2�
4j
� + E0
2, �29�

where j=n�z is the constant current density, and E0= ��z�z=0
is the electric field strength at the planar emitter. Let us also
introduce the notation for the electric strength at the opposite
electrode, E1= ��z�z=h �h is the interelectrode distance�, and
for the electric potential on it, �h= ���z=h. From the solution
�29� one can obtain the relations between the quantities E0,
E1, �h, h, and j,

4j
�h = E1
2 − E0

2,

6j2h − E0
3 = �2j
�h − E0

2�E1. �30�

By analogy with 	c, we introduce the interelectrode distance
hc=4�h / �3E1�, corresponding to the limit E0=0, and then
rewrite the expressions �30� as

j =
4�h

3/2

9hc
2 �1 −

E0
2

E1
2�,

h

hc
= 1 − � E0

E1 + E0
�2

. �31�

Note that, in the limit E0 /E1→0, the first equation of �31�
represents the Child-Langmuir law �20,21� for a plane
vacuum diode. It follows from the second equation of �31�
that E0�E1


1−h /hc in the same limit, i.e., for fixed �h and
E1, the electric field strength at the emitter surface E0 has a
square root dependence on the small quantity hc−h. For h
=hc, the electric field at the emitter surface is completely
screened by the space charge. At given �h and E1, the space
charge density decreases as the interelectrode distance h is
reduced. The opposite limit, where the space charge is absent
�E0=E1 and ��z�=E1z�, is reached at h= �3 /4�hc.

So, in the framework of the discussed analogy we can
identify �i� the angles 	m, 	c, and 	T with the interelectrode
distances h, hc, and hT= �3 /4�hc, respectively, �ii� the electric
field strength on the cone surface at a unit distance from the
apex E with the strength at the surface of the planar emitter
surface E0, �iii� the electric field strength at the symmetry
axis at a unit distance from the cone apex ����=1 /2 with the
strength at the opposite electrode E1, and also �iv� the unit
potential difference between the cone axis and its surface for
r=1 with the fixed potential difference �h for a plane
vacuum diode. In order to compare the characteristics of
conical and planar diodes, we apply the linear mapping of
the angle interval 	T�	m�	c into the interval of distances
hT�h�hc,

h − hT

h − hc
=

	m − 	c

	m − 	T
. �32�

The analogs of the functions F��� and E��� corresponding to
the one-dimensional model �28�,

FIG. 2. Solutions of the system �12� for the cone half angles
�=�T �dotted lines�, �=35° �dashed lines�, and �=�c �solid lines�.

FIG. 3. Auxiliary functions E��� and F��� �solid lines�, which
represent the electric field strength on the cone surface at r=1 and,
respectively, the ion flux from the top part of the cone �0�r�1�.
The dashed lines correspond to the one-dimensional model Eqs.
�31�–�33�.
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Fpl =
9jhc

2

4�h
3/2F��c�, Epl =

E0

E1
E��T� , �33�

are presented in Fig. 3. It can be seen that the properties of
conical �12� and planar �28� models are qualitatively similar.
Consequently, we should expect that E��	c−	m�1/2 at 	m
→	c, or, in terms of the cone half angle, E���−�c�1/2 at
�→�c, as we wished to show.

Taking into account such a dependence near the limiting
regime �25�, we approximate the calculated dependence of E
on �, by the formula

E��� = − 0.9754� − 0.6176�2 + 0.8342�3 − 0.2164�4,

�34�

where �= ���−�c� / ��T−�c��1/2. The error of the approxima-
tion �34� is less than 0.1% over the range �c����T. Ac-
cording to the balance condition �16�, the obtained depen-
dence E��� determines the relation between the geometry of
the emitting cusp, i.e., the angle �, and the external control
parameter of the system, i.e., the potential V��L.

D. The relations between model parameters

The quantity F���, which is determined by �19�, specifies
a particle flux from the top part of the cone, 0�r�1. The
angular dependence of this function obtained as a result of
numerical solution of the problem �12�–�14� is presented in
Fig. 3. The calculated function F��� can be approximated by
the relation

F��� � 1.8863� + 0.0956�2 − 0.2259�3 − 0.1167�4,

�35�

where ����=1−�2= ��T−�� / ��T−�c�. The error of this ap-
proximation is less than 0.15%. Note that the function F���
monotonically decreases from �1.637 to zero as the angle �
changes from �c to �T.

The expressions �16� and �19� together with �34� and �35�
allow us to obtain the dependence of the cone half angle �
on the current J as well as the current-voltage characteristic
of the cone, i.e., the dependence of J on V. These relation-
ships are plotted in Figs. 4 and 5, respectively.

From Fig. 4 it can be seen that the angle monotonically
decreases with increasing current. It is equal to the Taylor
angle �T�49.29° at zero current and tends to the angle �c
�21.89° in the formal limit of an infinite current. Note that
the interpretation of experiments �14–19� in the framework
of our model corresponds to the dimensionless current in the
range 0�J�1 �see the inset of Fig. 4�. For larger current
values, the cone structure becomes unstable.

An important feature of the theoretical current-voltage
characteristic �Fig. 5� is its threshold character. There is no
electric current, J=0, if V�V0=
cot �T / f��T��0.9512.
This is related to the impossibility of a balance between the
electrostatic and capillary forces at a relatively small poten-
tial difference. The capillary force will dominate and the
cone structure will break. In the formal limit of large V the
model yields the universal Child-Langmuir law J
→F��c�V3/2, which describes the regime of space charge

limitation of the current as a result of complete screening of
the electric field at the electrode surface.

Excluding the parameter � from �16� and �19�, we can
rewrite the dependence of J on V in the explicit form. The
function F linearly goes up to the value F��c� as �→�c �see
Fig. 3�, and, as discussed above, the function E tends to zero
according to the square root law. As a consequence, the de-
pendence of J on V must have the form J� j0V3/2+ j1V−1/2 in
the limit V→. With this estimate taken into account, for
V�V0 the required dependence can be approximated by the
expression

J = V3/2� j0 +
j1

V2 +
j2

V4 +
j3

V6� . �36�

The coefficients of the approximation �36� are the following:
j0=1.6372, j1=−1.8635, j2=0.3523, j3=−0.006 76; the ap-
proximation error is less than 0.000 15 in absolute value.

Thus, the relations �16� and �19� together with the ap-
proximate expressions �34�–�36� completely determine the

FIG. 4. Dependence of the cone half angle � on the dimension-
less emission current J. The inset demonstrates the same depen-
dence for relatively small currents.

FIG. 5. Current J as a function of the applied potential differ-
ence V. The dotted line shows the asymptotic shape of the current-
voltage characteristic corresponding to the Child-Langmuir law.
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integral characteristics of the system. They establish relation-
ships between the following quantities: the applied potential
difference V, the emission current J, and the cone half angle
�. This will allow us to compare our theoretical calculations
with available experimental data in the next section.

IV. COMPARISON WITH EXPERIMENTAL DATA

In order to compare the results of our calculations with
experimental data, we assume that the control parameter of
the model �L is directly proportional to the potential differ-
ence U applied to the interelectrode space, i.e.,

�L = �U , �37�

where the proportionality coefficient � is determined by con-
structional features of an experimental facility and does not
depend on the emission current. Then, after switching to di-
mensional quantities, the expressions �16� and �19� become

U = �2�

�0
�1/2
L���cot �

�E���
, �38�

I = �0�2q

m
�1/2

F�����U�3/2. �39�

Here we take into account that the characteristic size L of the
top part of the infinite model cone �the electric current from
this part of the cone is identified with the emission current
from the experimentally observed conical spike� can depend
on the value of the emission current and, as a consequence,
on the angle �.

The relations �38� and �39� together with the approximate
formulas �34�–�36� allow one to determine the free param-
eters of the model, namely, the characteristic size of the cone
L��� and the coefficient � characterizing the electric field
distribution in the experimental facilities, from the available
experimental data on current-voltage and current-angle de-
pendencies for liquid-metal ion sources. We have used data
for emission into vacuum from liquid indium �14�, gallium

�15�, and tin �17�, and also from liquid alloys Au+Si �16�,
Co+Ge �18�, and Au+Ge �19�. In our calculations we have
taken the following values of the surface tension: �
=0.572 N /m �In �17��, 0.735 N/m �Ga �17��, 0.560 N/m �Sn
�17��, 2.20 N/m �Au+Si �19��, 1.84 N/m �Co�Ge �18��, and
1.62 N/m �Au+Ge �19��. The angular dependence of L was
approximated by the two-parameter function

L��� = Lc + �LT − Lc�� � − �c

�T − �c
�2

, �40�

where LT and Lc are parameters. It should be noted that the
maximum half angle �max, corresponding to zero emission
current in the experiments �14–19�, slightly differs from the
Taylor angle �T. Thus, for comparison with the theory, the
experimentally observed values of � have been corrected by
�T−�max.

Due to its physical properties �low temperature of melt-
ing, low pressure of saturated vapor, primarily single ioniza-
tion in the emission processes�, gallium is the most conve-
nient and reliable metal for investigating the operation of
liquid-metal ion sources �3�. In �15� gallium ion sources,
including tungsten needles with tip radii Rt=2 and 20 �m,
were investigated. As a result of treating the data on the
current-voltage characteristics and geometry of the observed
structures on the surface of liquid gallium, presented in �15�,
we obtain �=0.0905, LT=0.65 �m, Lc=0.84 �m �Rt
=2 �m�; �=0.076, LT=0.84 �m, Lc=0.84 �m �Rt
=20 �m�. The achieved quality in describing the experi-
mental data is demonstrated in Fig. 6. Application of a
sharper needle �with Rt=2 �m� provides a stronger focusing
of the electric field that corresponds to a larger value of the
coefficient � and, consequently, to a smaller value of the
threshold potential difference �see Fig. 6�. On the other hand,
a small initial radius of curvature probably begins to “con-
strict” the developing cone; the value of LT corresponding to
Rt=2 �m is somewhat smaller than for Rt=20 �m. Accord-
ing to the relations �38� and �39�, a smaller size of the cone
leads to faster change of the cone half angle with increase in
emission current, all other parameters �the surface tension

FIG. 6. Change in the cone half angle versus the emission current �left� and the current-voltage characteristics �right� for a gallium
liquid-metal ion source. The points correspond to the experimental data of �15� and the lines to the theory.
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coefficient, the mass and charge of emitted particles� being
the same �see Fig. 6�. Note that the values of LT obtained are
comparable with the size of the experimentally observed
cones �they are of the order of 1 �m�.

Figure 7 shows the current-voltage and current-angle de-
pendencies for the conical spikes observed at the surfaces of
liquid indium �14� and tin �17�. Probably, the strongly non-
linear character of the current-voltage dependence for indium
is an experimental error �14�. In later publications �18,19� the
same authors approximate this dependence by a linear func-
tion; its slope is approximately the same as for the corre-
sponding theoretical curve in Fig. 7.

It has been noted in �17� that both singly Sn+ and doubly
charged ions Sn2+ are emitted from the surface of tin. The
fraction of doubly charged ions is x2=N2 / �N1+N2��45%
�19�. It is easy to verify that the relations obtained above are
applicable for a flow consisting of k different types of par-
ticles. The only necessary modification refers to the expres-
sion for total current, �39�. We should apply the following
change:


2q

m
→ 

i=1

k
qixi

Q

2qi

mi
, Q = 

i=1

k

qixi, �41�

where qi, mi, and xi are the charge, mass, and relative frac-
tion of particles of i type. So, for the case of tin �q2=2q1
=2e, m2=m1=m�, the expression �39� transforms into

I =
1 + �2
2 − 1�x2

1 + x2
�0�2e

m
�1/2

F�����U�3/2, �42�

where e is the elementary charge. Indium ions are emitted in
the singly charged state In+ �19�, so that such a modification
is not required for an indium liquid-metal ion source. The
theoretical curves presented in Fig. 7 correspond to the fol-
lowing values of the parameters: �=0.0495, LT=0.4 �m,
Lc=0.3 �m �In�; �=0.075, LT=1.1 �m, Lc=0.78 �m �Sn�.

Indium and tin have close atomic weights and surface
tension coefficients. In this connection, a sharp distinction
between the dependences I�U� and ��I� corresponding to
these metals is surprising �17�. One of the likely reasons for
the different behavior of indium and tin is the presence of a
large amount of Sn2+ ions in the experiments �17�. Ions with
larger charge numbers move more quickly away from the
electrode and, as a consequence, provide less screening ef-
fect. Therefore, an increase in the voltage is accompanied by
a larger increase in the emission current and by a relatively
slow change in the cone shape. The dependences I�U� and
��I�, corresponding to the assumptions that only the singly
charged ions Sn+ are emitted from liquid tin and the param-
eters �, LT, and Lc are fixed, are shown in Fig. 7 by the
dotted line. One can see that considering only singly charged
ions draws together the model the model characteristics of
liquid-metal emitters based on liquid tin and indium. How-
ever, the initial difference between the curves is too large and
cannot be explained only by the presence of Sn2+ ions.

Another reason for the behavior difference between
liquid-metal ion sources is in the conditions of the experi-
mental studies �14� and �17�. The theoretical model pre-
sented in this work points to the essential difference between
the characteristic sizes LT of the cones. One can assume that
the developing cone was constricted by the small size of the
tip of the tungsten needle in the experiment with indium
�Rt=1.0 �m according to �14��. Although the value of the
tip radius Rt=4 �m for the experiments with indium was
indicated in the subsequent paper �19�, it was measured with
the help of the image of the liquid surface instead of the
needle. The above analysis of gallium emitters with different
needles shows that the constriction effect becomes appre-
ciable if Rt�2 �m.

Finally, Fig. 8 shows the dependencies I�U� and ��I�
for the liquid alloys Au+Si �16�, Co+Ge �18�, and Au+Ge
�19� that correspond to the model coefficients �=0.084,
LT=1.0 �m, Lc=0.45 �m �Au+Si�; �=0.084, LT
=0.27 �m, Lc=0.08 �m �Co+Ge�; �=0.051, LT
=0.30 �m, Lc=0.10 �m �Au+Ge�. The theory and obser-

FIG. 7. Change in the cone half angle versus the emission current �left� and the current-voltage characteristics �right� for indium and tin
liquid-metal sources. The points correspond to the experimental data of �14,17� and the lines to the theory; the solid line corresponds to
indium, the dashed line to tin, and the dotted line to tin under the condition of the emission of singly charged ions Sn+ only.

BOLTACHEV, ZUBAREV, AND ZUBAREVA PHYSICAL REVIEW E 77, 056607 �2008�

056607-8



vations are in rather good agreement only for Au+Si from
the above-listed alloys. The alloys containing germanium are
distinguished by the presence of breaks on the experimental
curves ��I�. This behavior cannot be described in the frame-
work of the proposed model. The anomalous character of the
dependence ��I� can be caused by changing properties of the
charged particle flow. So “freezing” of the cone angle along
with the continuing growth of the emission current, which is
characteristic for the mentioned alloys �see Fig. 8�, allows us
to suppose that, from some point, the average ratio of mass
and charge density over the flow decreases. Unfortunately,
the experimental works �18,19� does not include information
about changes in the mass-to-charge ratio with the emission
current. In Fig. 8 the theoretical curves are obtained under
the assumption that the intense emission of doubly charged
germanium ions Ge2+ starts at some value of the applied
potential difference U1 �or current I1�. The quantities U1 and
I1 are of the order of 3.87 kV and 30 µA for the alloy Co
+Ge, and 6.3 kV and 15 µA for Au+Ge. In both cases, the
potential drop is �L=�U�0.32 kV at a distance of the or-
der of the cone size �R=L�.

V. CONCLUSION

In the present paper we have developed a self-consistent
model describing how the space charge near the emitting
cone apex affects its shape. Our approach is based on the
self-similar reduction of the equations that govern the spatial
distributions of the electric field, ion velocity field, and par-
ticle concentration to a system of ordinary differential equa-
tions. As a result of numerical solution of this system, the
conditions for the mutual compensation of the capillary and
electrostatic forces on the conic surface of a liquid-metal
anode have been obtained. This allows us to find the depen-

dences of the cone angle and emission current on the applied
potential difference. They correctly represent the main fea-
tures of the operation of a liquid-metal ion source. A com-
parison was made between the developed theoretical model
and available experimental data for emission from pure gal-
lium, indium, and tin, or from alloys Au+Si, Co+Ge, and
Au+Ge. Based on our theoretical results, we have proposed
explanations for some specific features of the emissive be-
havior of these systems. So the difference in behavior be-
tween indium and tin, which have close characteristics �the
coefficient of surface tension, the mass-to-charge ratio� is
probably related to the presence of doubly charged ions Sn2+

in tin emission and to use of a sharper tungsten needle in the
experiments with indium.

In conclusion, let us note once again that the developed
model does not pretend to describe all aspects of operation of
liquid-metal ion sources. In particular, the consideration of
the jetlike protrusion at the cone vertex, from which the vast
majority of ions are evaporated, remains beyond the scope of
the model. The self-similar solutions used above describe
LMIS operation in terms of the averaged characteristics ��,
I, and U� only.
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